Functional Materials Introduction

Prof. dr. Matjaz Valant
University of Nova Gorica
Slovenia

м

Kaj se bomo učili (in naučili)

Tuesday 2.4.	Chemical bond, crystal structure	
Tuesday 9.4.	Structural defects Instructions for seminar (doc. Belec)	
Tuesday 16.4.	Diffusion, Synthesis	
Tuesday 23.4.	Synthesis, Phase equilibria	
Tuesday 7.5.	Seminar (doc. Belec)	
Tuesday 14.5.	Student presentations (doc. Belec)	
Tuesday 21.5.	Functional properties I	
Tuesday 28. 5.	Functional properties II	


Literature:

- > D. Calister Jr., Fundamentals of Materials Science and Engineering
- > D. Kolar: Tehnična keramika 1 in Tehnična keramika 2
- > S. Pejovnik, M. Gaberšček, Uvod v znanost o materialih za inženirje
- > W.D. Kingery, H.K. Bowen D.R. Uhlmann, *Introduction to Ceramics*

7

Criteria for sustainable materials

- > Functionality
- Compatibility
- Reliability
- Durability
- > Shaping capability
- Availability
- **Economics**
- Environmental sustainability (of products and production)

Metals and alloys

- > Fe and steels
- ➤ Al and alloys
- Cu and alloys
- ➤ Ti and alloys
- ➤ Ni and alloys

Basic groups of materials

Polymers

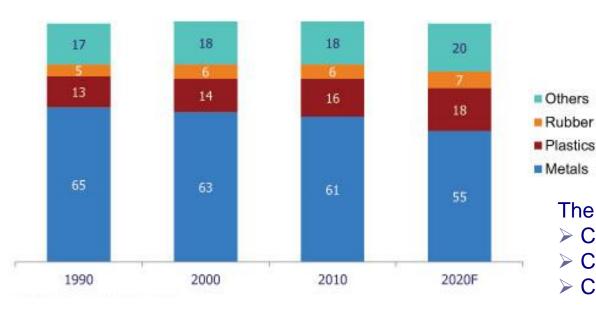
- Polyethylene (PE)
- Polymethyl methacrylate (PMMA)
- •nylon
- Polystyrene (PS)
- Polyurethane (PU)
- Polyvinyl chloride (PVC)
- acrylonitrile-butadiene-styrene (ABS)

Ceramics, glass

- Corundum (Al2O3)
- Porcelain, clay (Al-silicates)
- Carborundum (SiC)
- •Silicon nitride (Si3N4)
- Perovskite (BaTiO3, PZT)
- Cement, concrete
- •Glass

Composites

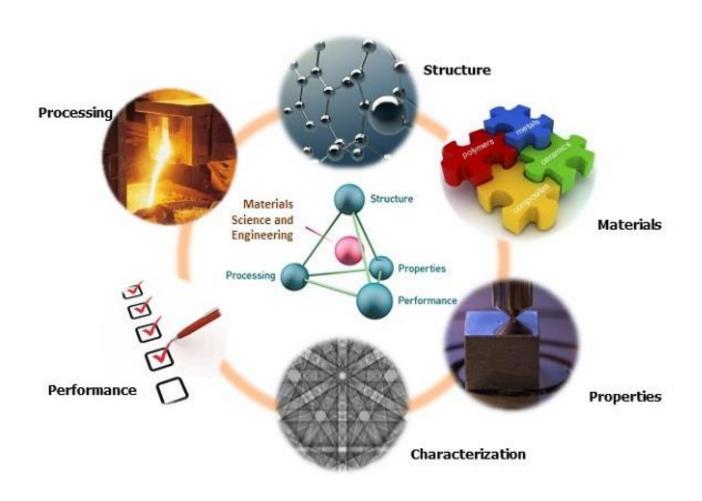
- •wood
- •fiberglass
- •C-C composites
- •glass-ceramics
- •cermet (WIDIA)
- polymers with fillers



Competition among materials in automotive industry

Average material composition of a passenger vehicle

(%, 1990 - 2020F)


Annual increase in production

Steel 3.4% Aluminum 8% Polymers 18%

The rest up to 100%:

- Ceramics
- Carbon
- Composites

Development of functional materials

Functional materials Chemical bond

Chemical bond

- Primary (strong)
 - > Ionic
 - Covalent
 - Metal
- Secondary (weak) van der Waals bonds
 - Ion-dipole
 - Dipole-dipole (hydrogen bond)
 - Ion-induced dipole
 - Induced dipole induced dipole (dispersive forces)

M

Ionic bond between M⁺ and X⁻

Coulomb (electrostatic) attraction and repulsion act simultaneously

$$U = \frac{z_1 z_2 q^2}{4\pi\varepsilon_0 r} + \frac{b}{r^n}$$

z₁,z₂ ... valence

q...electron charge 1.6x10⁻¹²C


 ϵ_{o} ..vacuum permittivity

8.85x10⁻¹²F/m

b, n...const.

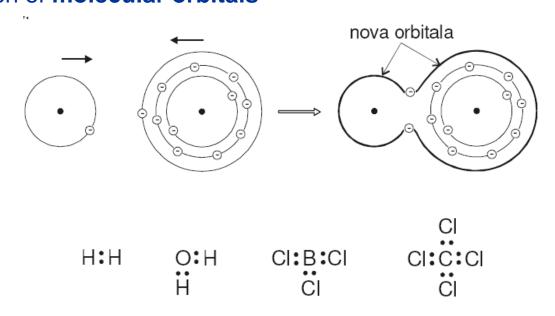
r...distance between ions

U_o...bonding energy

U_o and shape of the potential define majority of material properties

Melting point: low U_0 - gas,

high U_0 - solid


Shallow potential: elastic material, high temp. expension coefficient

Steep potential: rigid material, low temp. expension coefficient

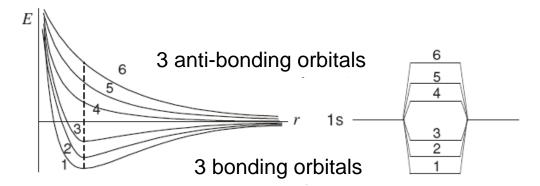
Covalent bond

One ion does not donate electron to another. Valence electrons belong to both ions – formation of **molecular orbitals**

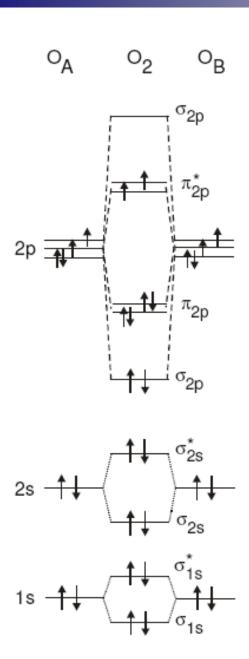
Polymers, diamand, Si, Ge, GaAs, SiC

Mainly the covalent bond is stronger then ionic

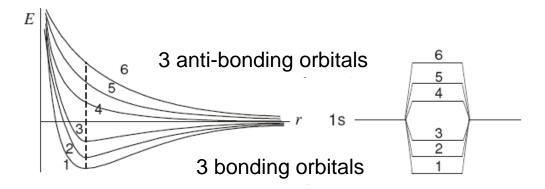
Tališče diamanta: 3550°C Tališče NaCl: 801°C



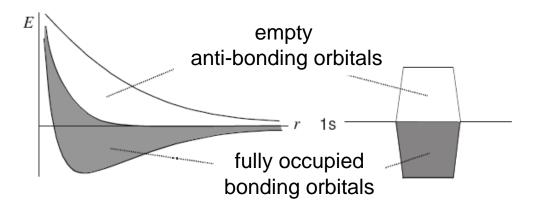
 O_B



Formation of electron bands



Interaction of 2s orbitals of 6 metal atoms

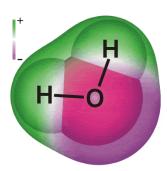


Formation of electron bands

Interaction of 2s orbitals of 6 metal atoms

Interaction of 2s orbitals of large number of metal atoms (e.g. one mol) – high densty of orbitals forms electron bands

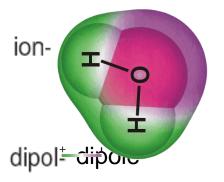
Secondary (van der Waalsove) bonds


By their nature these bonds are electrostatic. Significantly weaker (10x) than primary bonds (0.1-0.5 eV/atom)

ion- dipole

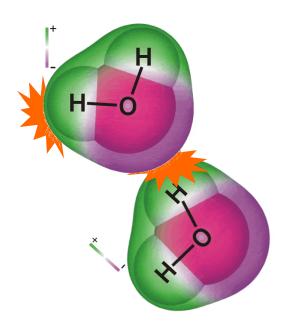
dipol- dipole

ion - induced dipole


Secondary (van der Waalsove) bonds

By their nature these bonds are electrostatic. Significantly weaker (10x) than primary bonds (0.1-0.5 eV/atom)

Dipoles are permanent or induced



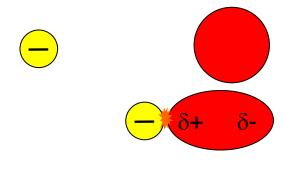
Hydrogen bond between molecules with covalently bound H on O, F, N

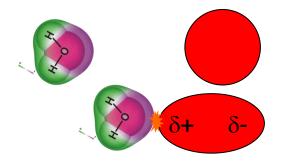
One of the strongest secondary bonds

Secondary (van der Waalsove) bonds

By their nature these bonds are electrostatic. Significantly weaker (10x) than primary bonds (0.1-0.5 eV/atom)

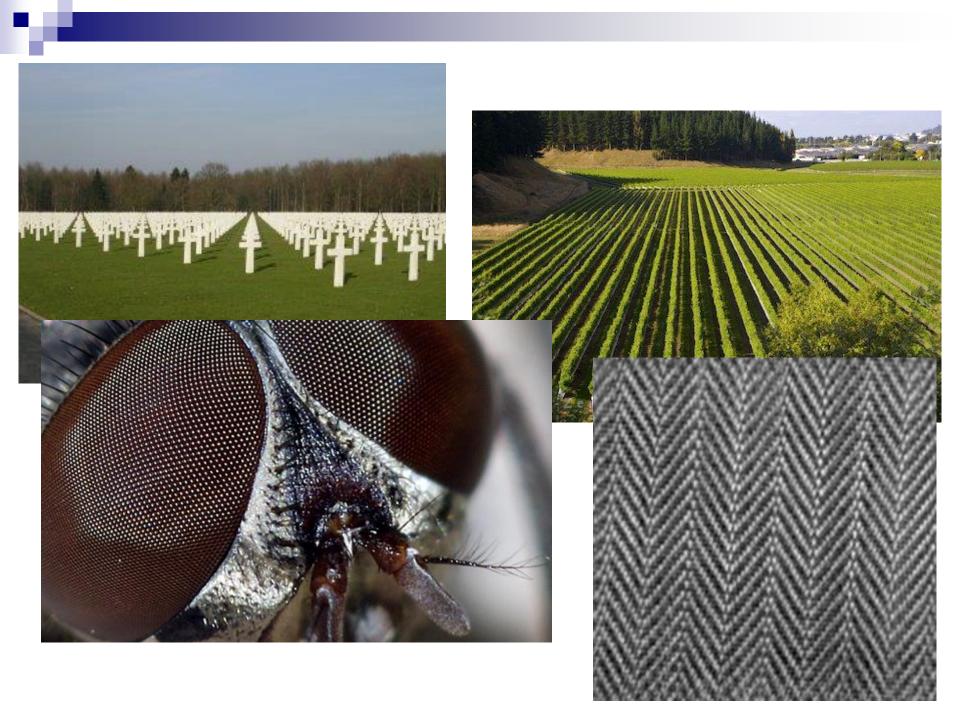
ion- dipole


dipol- dipole



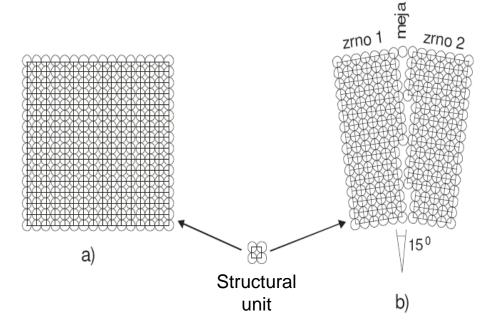
ion - induced dipole

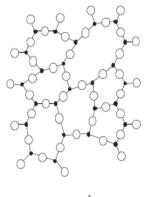
Dipoles are permanent or induced



Very weak bonds

Bound	Туре	Energy kJ/mol	 Melting point oC	Boiling point oc
C-C	covalent	346	3550	-
Si-O		452	1710	-
Si-Si		222	1410	2355
Na-F	ionic	477	902	
Na-Cl		408	801	1439
Na-Br		362	757	1393
Na-I		304	660	1300
Mg=O	ionic-double	377	2640	-
Li-Li	metal	105	180	1347
Fe-Fe		268	1535	2750
Cu-Cu		255	1083	2567
Ne-Ne	dispersion	2.1	-249	-246
Ar-Ar		7.7	-189	-186
НОН	H- bond	~25	 0	100
	_			

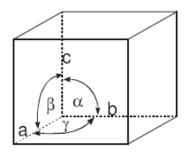

Functional materials Structural defects



w

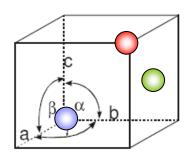
Basic types of structural ordering

- <u>Single crystals</u> Long-range order, complete translation symmetry
- <u>Polycrystalline material</u>
 Long-range order in constrain
 domains **grains**,
 Orientational mismatch between
 the grains **grain boundaries**
- Amorphous material
 Supercooled liquids, no longerange order, possible short-range order



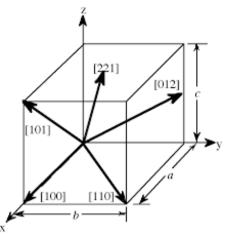
м

Basic concepts of crystallography

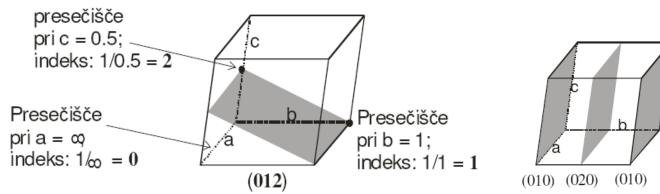

Translational movement of the unit cell fills the whole space - the unit cell must have the shape of a parallelepiped

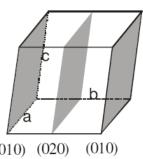
a, b, c ... unit cell parameters (edges)

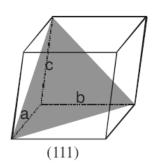
 $\alpha, \beta, \gamma \dots$ unit cell angles


The position of the item inside the unit cell is described by point coordinates - point coordinates are relative - written as the proportion of the edge of the unit cell

- (0,0,0)
- $(\frac{1}{2}, 1, \frac{1}{2})$
- (1,1,1)

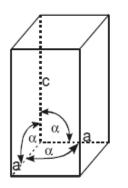

Crystallographic directions: We define them as vectors with a starting point in point (0,0,0) and a certain grid position, which is written with a set of three

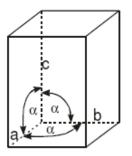

integers in square brackets



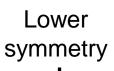
$$(x,y,z) = (1/a, 1/b, 1/c)$$

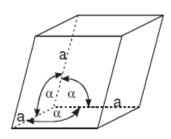

Crystallographic planes: Crystallographic planes are defined by the intersection with the edges of the unit cell. We write them in the form of Miller indices in parentheses



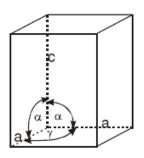


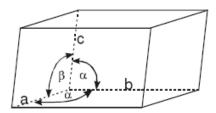
Crystal systems - syngonia

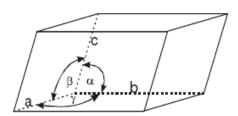


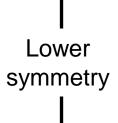

kubična: a = b = c, $\alpha = \beta = \gamma = 90^{\circ}$

tetragonalna: $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$


ortorombska: $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$


Kristalni sistemi - singonije


romboedrična: a = b = c, $\alpha = \beta = \gamma \neq 90^{\circ}$

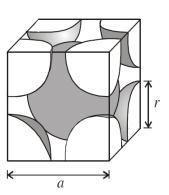

heksagonalna: $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$

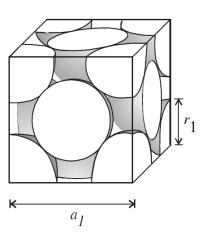
monoklinska: $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \neq \beta$

triklinska: $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Close packed Structures

Most of metals with the same kind of atoms (Pb, Fe, Ni...) crystallize in one of the three unit cells:


- body centered cubic (bcc)
- face centered cubic (fcc closed packed)
- hexagonal close packed (hcp)

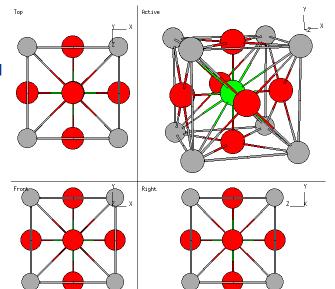

$$d = a\sqrt{3} = 4r$$

$$V_{osn.celica} = a^3 = \left(\frac{4r}{\sqrt{3}}\right)^3$$

$$V_{atomov} = 2\frac{4\pi r^3}{3}$$

$$x = \frac{V_{atomov}}{V_{osn.celice}} = \frac{3\pi\sqrt{3}}{24} = 0,6802$$

$$x=0,7405$$


Calculation of theoretical density

$\rho = \frac{\text{mass of atoms in unit cell}}{\text{unit cell volume}}$

BaTiO₃

Ba...137,33 g/mol Ti... 47,90 g/mol O...16,00 g/mol

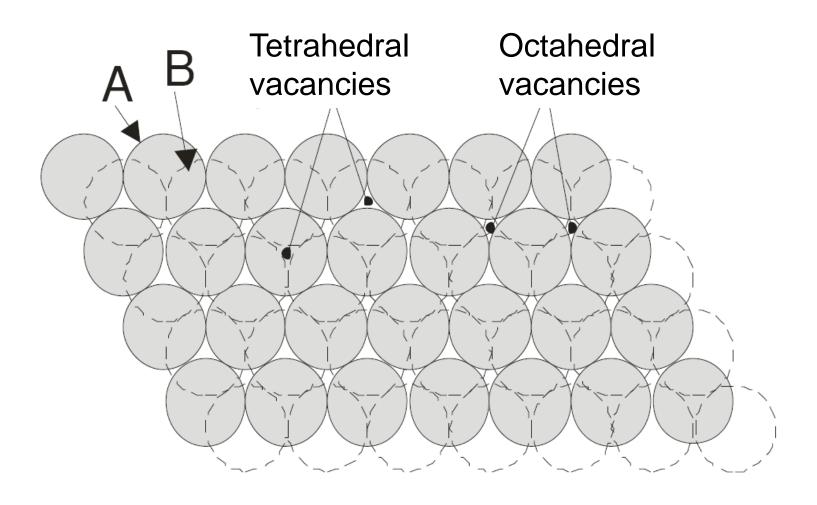
 ρ =6.035 g/cm³

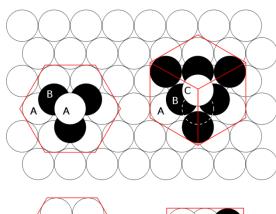
Unit cell volume $a=b=3,99\text{Å} = 3,99\cdot10^{-10} \text{ m}$ $c=4,03\text{Å} = 4,03\cdot10^{-10} \text{ m}$

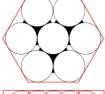
Volume = $64,158 \cdot 10^{-30} \text{ m}^3$

6 x 1/2 oxygen ions= 30 8 x 1/8 Ba ions = 1Ba 1 x 1 Ti ion = 1Ti

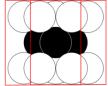
Mass of all ions m_i = 233,23g / N_A

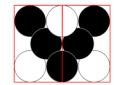

$$\rho = m_i/(N_A V_{osn.c.})$$

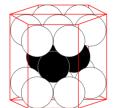

$$\rho = 233,23 \text{ g / (6.023 \cdot 64,158 \cdot 10^{-7} \text{ m}^3)}$$

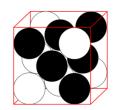

$$\rho = 6035604 \text{ g/m}^3$$

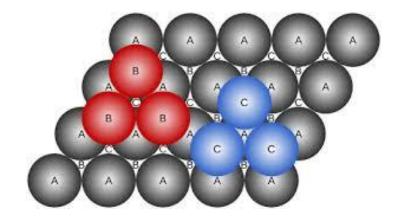
$$\rho = 6,035 \text{ g/cm}^3$$


Close packed structures









Two simple regular lattices that achieve the highest density of atom packing.

- cubic close packed also called Facecentered cubic (FCC)
- hexagonal close-packed (HCP),

FCC and HCP have the same space filling factor

Complex crystal structures

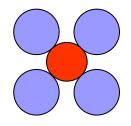
Oxides, nitrides, carbides, chalcogenides, intermetallic compounds

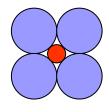
They are composed of different species (ions or atoms), which makes the crystal structures more complex

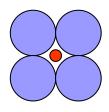
Three major factors that determine the type of a crystal structure:

➤ **Electronegativity:** parameter that tells how strong the species attract the electron. Larger the difference in electronegativity between the species, more ionic the bond will be.

Charge


Electroneutrality condition determines the stoichiometry of the unit cell and also the charge distribution (ion position) within the cell.


lonic radius

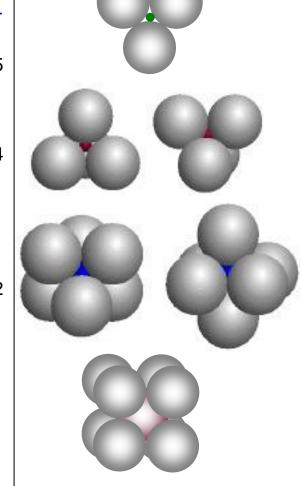

Determines the coordination number, cell geometry and ion position

Coordination number (CN) is a number of closest neighbors

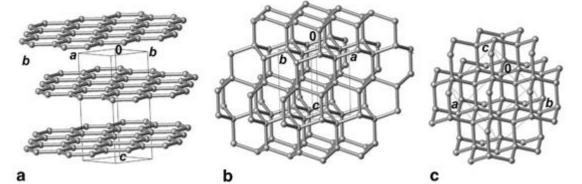
CN=4

less stable

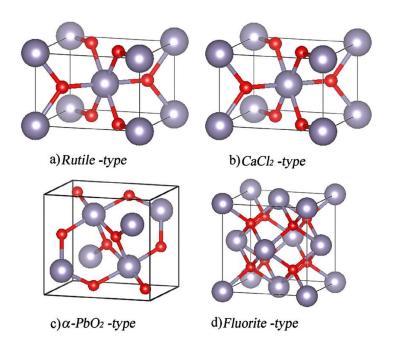
stable

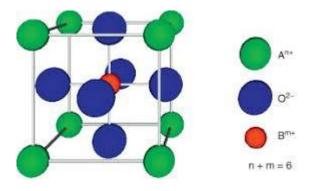

least stable

Radius of an ideal interstitial ion with CN=4


$$r_{ideal} = \frac{\sqrt{2} - 1}{2} = 0,207$$

CN	r _a /r _b	
2	<0.155 0.155-0.255	
4	0.255-0.414	8
6	0.414-0.732	


8 0.732-1.0



Some common structural types

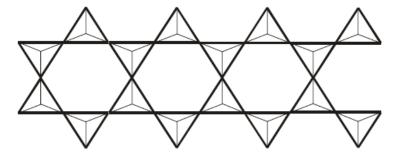
graphite **a**, hexagonal diamond (lonsdalite) **b** cubic diamond **c**,

Silicates

 $r(Si^{4+}) / r(O^{2-}) = 0.039nm / 0.132nm = 0.295$

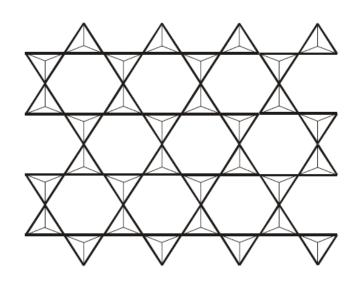
Si⁴⁺ is tetrahedrally coordinated. The tetrahedron is the basic structural element of silicates Tetrahedrons can connect over corners or edges.

$$\sin^{4-}$$
 symbol

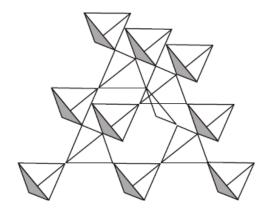


olivine and forsterite

pyroxenes

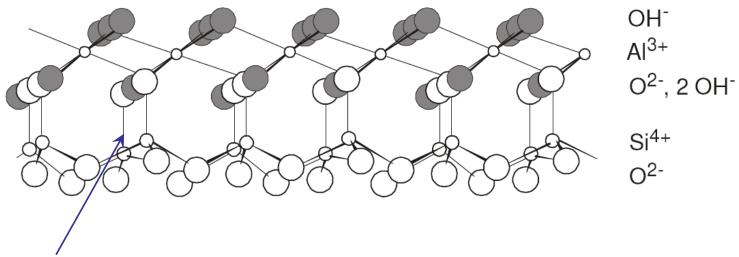

double chain

 $(Si_4O_{11}^{6-})_n$ amphiboles

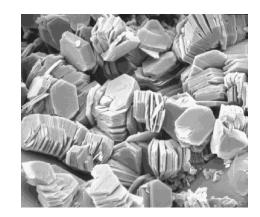


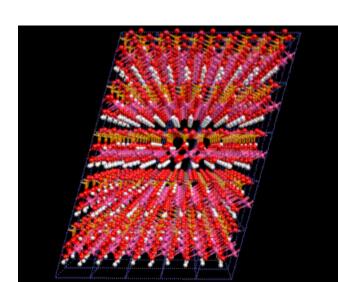
- clays kaolin
- > talc
- > muscovite

tridimenzionalni silikat

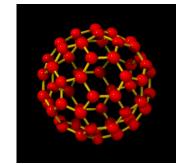


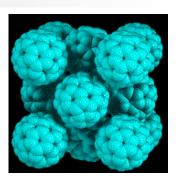
 $(SiO_2)_n$


 $(Si_2O_5^{2-})_n$

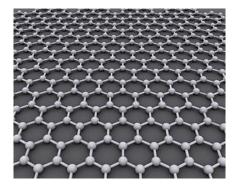

- > feldspares
- SiO₂ polymorphs(quartz, tridymite, cristobalite)

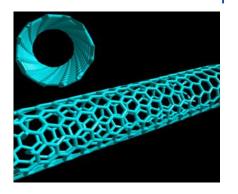
Kaolinite clays

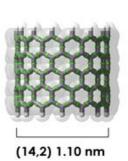


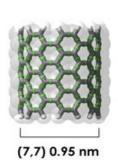

Hydrogen bond – the reason for plasticity of the clays

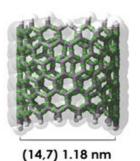
Carbon

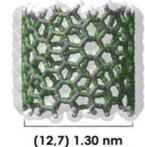


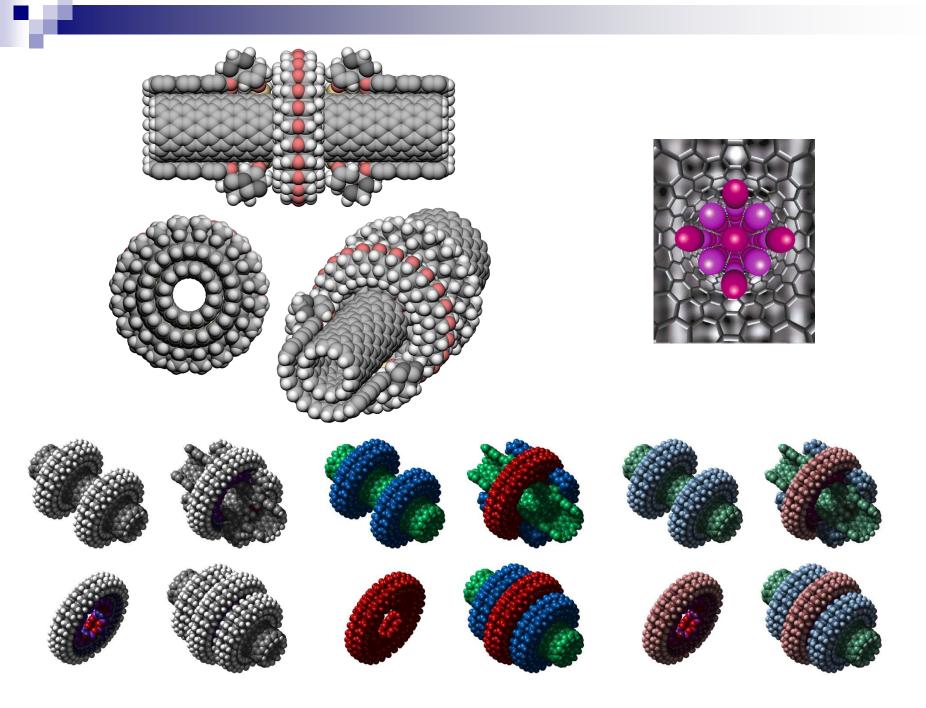

Most common modifications of carbon


- > Soot (amorphous carbon) pigment, vulcanisation, printing
- Graphite
 - moderator v nuclear technology, electrographite, sealing, thermal isolator
- Diamond abrasive, cutting tools, spintronic material
- ➤ Fulerenes (e.g. C₆₀)


 lubricant, drug delivery
- Graphene electronics
- Carbon nanotubes structural reinforcement, clinical aplications







Structural defects

People are like crystals. It is the defects in them that make them interesting. Sir F. Charles Frank

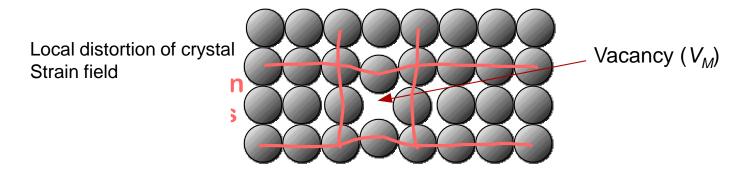
Perfection has one grave defect: it is apt to be dull W. Somerset Maugham

Because of the defects, materials possess special new properties The new properties can be technologically useful or damaging

Point defects (vacancies and interstitial atoms)

Intrinsic – not involving other kind of atoms Extrinsic – due to presence of other atoms

Multidimensional defects

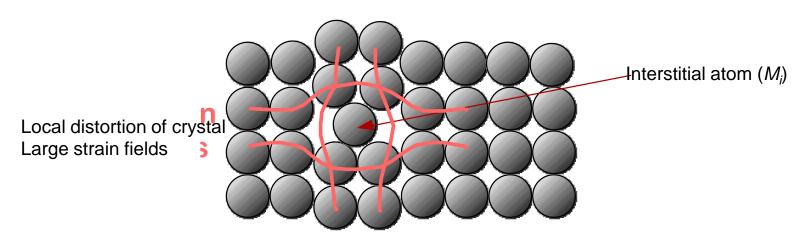

Line defects (dislocations)

Planar defects (grain boundaries, stacking faults, slip planes)

Point defects - intrinsic

Vacancies

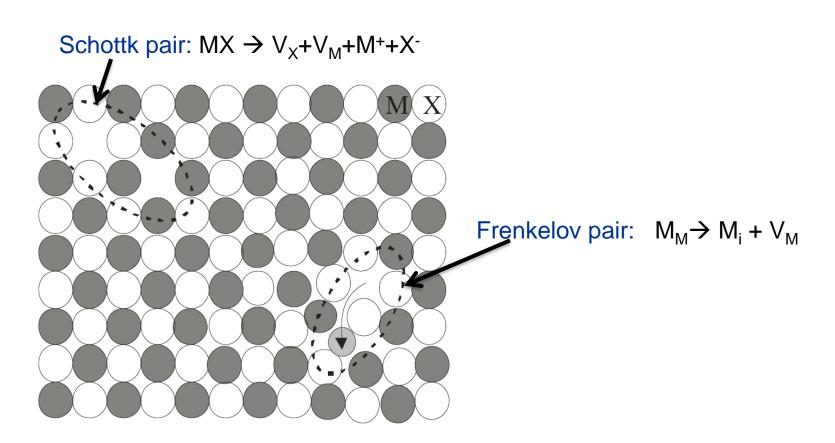
- Atom is removed vacancy in a regular crystal structure
- \succ according to Kroger-Vink notation, a symbol for the vacancy on the M atom site is V_M
- ➤ All crystals have vacancies vacancies are thermodynamic necessity. A "perfect" crystal is impossible to grow/produce


Charged vacancies: for ionic crystals – conservation of charge, mass and crystal sites M^+ removed: $MX \rightarrow V_M' + X_X + M^+$ electron localized on V $MX \rightarrow V_M + e' + X_X + M^+$ delocalized electron

X⁻ removed: $MX \rightarrow V_X^{\bullet} + M_M + X^{-}$ electron hole localize on V $MX \rightarrow V_X + h^{\bullet} + M_M + X^{-}$ delocalized electron hole

Point defect - intrinsic

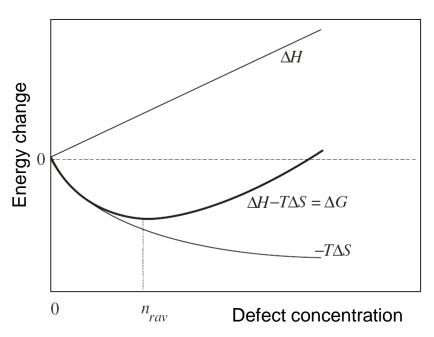
Interstitial atoms (atoms of the parent crystal)


- Interstitial atom is located on what used to be originally unoccupied crystal site (interstitia vacant space in a regular crystal structure)
- ➤ According to Kroger-Vink notation the symbol for the interstitial atom M is *M*;
- ➤ Interstitial atom induces large local strain fields in the crystal because the atom is much larger than the interstitia

v

Point defect - intrinsic

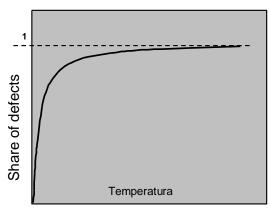
Combined defects are often more energy favourable (cancelling of the strain or charge neutralization)



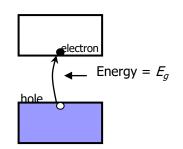
Concentration of intrinsic defects

- Free energy for defect formation: $\Delta G = \Delta H T \Delta S$
 - \rightarrow $\Delta H > 0$ (enthalpy of the system increases)
 - \triangleright But $\triangle S > 0$ (defect \Rightarrow disorder \Rightarrow entropy increases)
 - $\rightarrow \Delta G = \Delta H T \Delta S < 0$

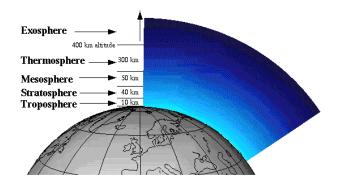
Free energy for defect formation is negative – the process is favorable (entropic effect)


At any temperature higher than 0K the crystals are not perfect. They involve (at least) thermodynamic concentration of defects 0K. The concentration is temperature dependent

Concentration of intrinsic defects


$$\frac{n}{N} = e^{\frac{-\Delta H_f}{kT}}$$
 Boltzmann distribution law

n = number of defects, N = number of crystallographic sites ΔH_f = enthalpy for defect formation k = Boltzmann constant (1.38·10⁻²³J/K)



Other examples:

Elektronic excitation
$$P_e = e^{\frac{-E_g}{2kT}}$$

- Density of atmosphere
$$n(h) = n(O)e^{\frac{-mgh}{kT}}$$

Concentration of intrinsic defects

Vacancies in metals

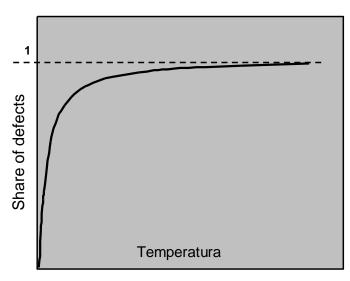
$$\frac{n}{N} = e^{\frac{-\Delta H_f}{kT}}$$

$$\Delta H_{f(v)} \approx 1 \text{ eV}$$

T = 300 K

 $n_v / N \approx 10^{-18}$

under detection limit

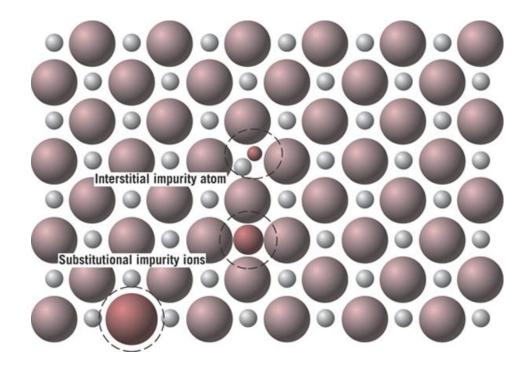

T = 1200 K

 $n_{v} / N \approx 10^{-5}$

measurable

Higher $T \Rightarrow$ more defects

Lower $\Delta H_f \Rightarrow$ more defects

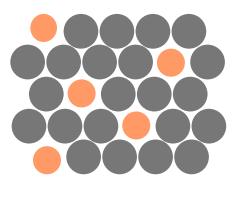

Vacancies: often the vacancy formation energy is slightly lower than binding energy (typical values for metals are around 1eV and covalent materials 4eV (Si) – 7eV (diamant)

Point defects- extrinsic

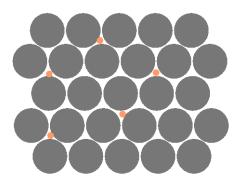
They appear due to presence of other kind of atoms (impurities or dopants)

There is no perfectly pure material. Impurities are always present. Materials with purity 99.9999% will have 10²² - 10²³ impurity atoms per m³.

Extrinsic point defects can be interstitial or substitutional


Solid solutions

Introduction of dopants into the crystal lattice causes formation of first **a solid solution** and then **a secondary phase**

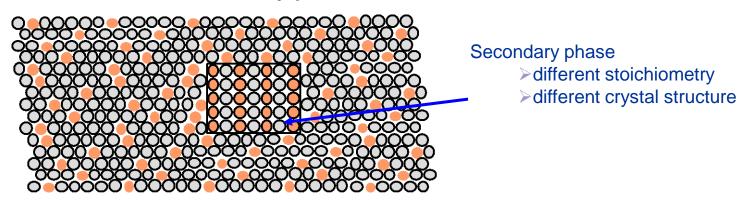

The processes depend on properties of the dopant (size and charge), its concentration and temperature.

At low concentrations the solid solution is formed. The dopant atoms are randomly distributed. Electroneutrality must be conserved.

Two types of the solid solutions:

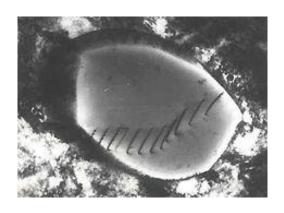
Substitutional

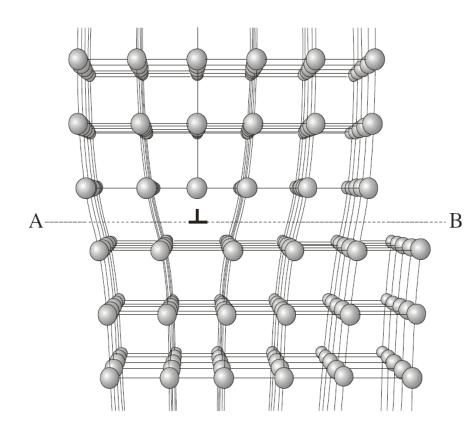
Interstitial


Solid solutions

Properties of solid solutions

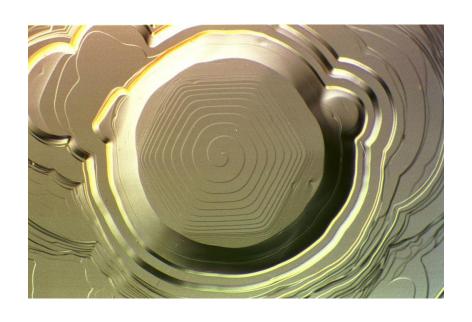
- Crystal structure of the parent phase is conserved (no change in space group)
- No secondary phase
- Composition of the solid solution is homogeneous (the dopants are randomy distributed)
- Unit cell volume is changed (Vegard's law)

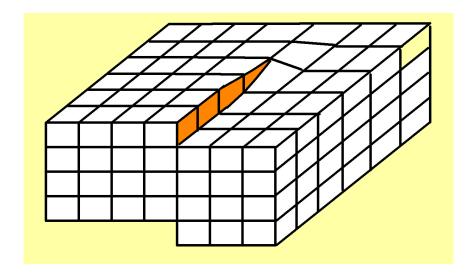

Vegard's law: Unit cell volume is changing linearly with the dopant concentration


When the solid solubility limit is exceeded, the atoms start to form a new crystal phase The grains/domains of **a secondary phase** are formed

Line defects – Edge dislocation

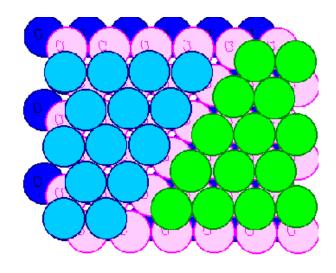
Extra plane inserted into te crystal lattice
Distortion of lattice and large strain fields
Strong influence on mechanical properties
(strengthening of steel)

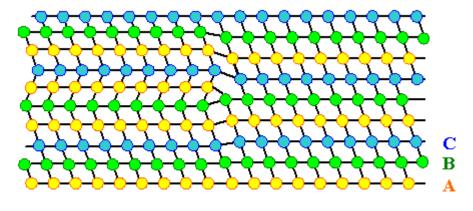




Line defects – Screw dislocation

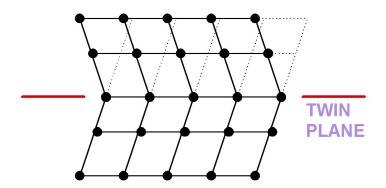
No extra crystal plane – the defect occurs because of partial shift of crystal planes napaka




Planar defects – Stacking fault

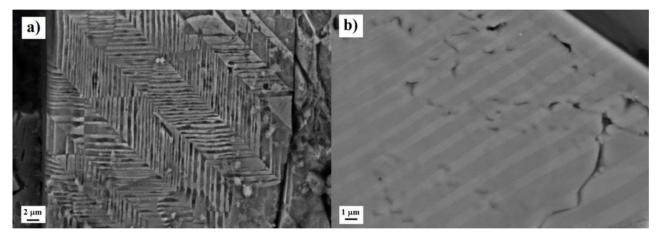
regular hcp sequence - ABABABA regular ccp sequence - ABCABCA.

Stacking fault happens with the stacking mistake of the atom planes e.g. ABCBCABCABC (missing A) or ABCABACABC (extra A)



Stacking fault associated with a dislocation

Planar defects – Twinning


Crystals often grow with a defect where a part of the crystal is a mirror image of another part

In the close packed structures twinning occurs due to stacking fault.

ABCABCBACBA

where C is the twin plane

The most investigated twinning systems are ferroelectric domains where the domain boudaries represent twin planes

